PRODUCT INFORMATION

Mouse MCP-1 ELISA

IB49702 and IB49702-10

Enzyme-linked immunosorbent assay for the

detection of mouse MCP-1.

For research use only.

Not for use in diagnostic procedures.

Mouse MCP-1 IB49702 IB49702-10

> Bender MedSystems GmbH Campus Vienna Biocenter 2 A-1030 Vienna, Austria, Europe

TABLE OF CONTENTS

1	Intended Use	3
2	Summary	3
3	Principles of the Test	4
4	Reagents Provided	6
5	Storage Instructions – ELISA Kit	8
6	Specimen Collection and Storage Instructions	8
7	Materials Required But Not Provided	9
8	Precautions for Use	10
9	Preparation of Reagents	12
10	Test Protocol	17
11	Calculation of Results	22
12	Limitations	25
13	Performance Characteristics	26
14	Bibliography	31
15	Ordering Information	33
16	Reagent Preparation Summary	34
17	Test Protocol Summary	35

1 Intended Use

The mouse MCP-1 ELISA is an enzyme-linked immunosorbent assay for the detection of mouse MCP-1. The mouse MCP-1 ELISA is for research use only. Not for diagnostic or therapeutic procedures.

2 Summary

Chemokines (chemoattractant cytokines) represent a superfamily of small secreted proteins that function as intercellular messengers to control migration and activation of leukocytes involved in inflammatory reactions and immunity (reviewed in 1, 2). Furthermore, chemokines are important mediators of many pathologies such as allergic responses, chronic inflammatory and autoimmune diseases, tumor growth and hematopoietic development (3, 4).

The CC-chemokine monocyte chemoattractant protein 1 (MCP-1), also known as monocyte chemotactic and activating factor (MCAF) was characterized as a monocyte-specific chemoattractant that was later shown to attract also T lymphocytes and NK cells (1, 2, 5, 6, 7). MCP-1 is mainly expressed by macrophages in response to a wide range of cytokines such as IL-6, TNF α and IL-1 β , but can, upon stimulation, also be produced by a variety of cells and tissues, such as fibroblasts, endothelial cells or certain tumor cells (5, 8). Because of its target cell specificity, MCP-1 was postulated to play a pathagenia role in a variety of diagonal participation.

pathogenic role in a variety of diseases characterized by mononuclear cell infiltration, including atherosclerosis (9), rheumatoid arthritis and allergic responses. (6, 7). Elevated levels of MCP-1 have also been found in connection with osseus inflammation (10) and Alzheimer's disease (AD) (11) as well as Myocardial Ischemia (12) and viral infections (13, 14).

In acute and chronic-active multiple sclerosis (MS) lesions immunoreactivity for MCP-1 was increased whereas MCP-1 was found to be significantly reduced in cerebrospinal fluids (CSF) and chronic lesions of patients with MS (15, 16). In basophils, MCP-1 is highly effective as a stimulus of histamine release but has only weak chemotactic activity. Additionally it has been shown to chemoattract CD4+ and CD8+ T lymphocytes, and expression of the MCP-1 chemokine may affect HIV infection via signalling through the CCR2 receptor (17).

3 Principles of the Test

An anti-mouse MCP-1 coating antibody is adsorbed onto microwells.

Figure 1

First Incubation

Coated Microwell

Figure 2

Mouse MCP-1 present in the sample or standard binds to antibodies adsorbed to the microwells. A biotin-conjugated anti-mouse MCP-1 antibody is added and binds to mouse MCP-1 captured by the first antibody.

Following incubation unbound biotinconjugated anti-mouse MCP-1 antibody is removed during a wash step. Streptavidin-HRP is added and binds to the biotinconjugated anti-mouse MCP-1 antibody.

Following incubation unbound Streptavidin-HRP is removed during a wash step, and substrate solution reactive with HRP is added to the wells. Figure 3

Standard or Sample

Biotin-Conjugate

Figure 4

Third Incubation

A coloured product is formed in proportion to the amount of mouse MCP-1 present in the sample or standard. The reaction is terminated by addition of acid and absorbance is measured at 450 nm. A standard curve is prepared from 7 mouse MCP-1 standard dilutions and mouse MCP-1 sample concentration determined. Figure 5

4 Reagents Provided

4.1 Reagents for mouse MCP-1 ELISA IB49702(96 tests)

- 1 aluminium pouch with a **Microwell Plate coated** with monoclonal antibody to mouse MCP-1
- 1 vial (100 μl) **Biotin-Conjugate** anti-mouse MCP-1 monoclonal antibody
- 1 vial (150 µl) Streptavidin-HRP
- 2 vials mouse MCP-1 **Standard** lyophilized, 2000 pg/ml upon reconstitution
- 1 vial (12 ml) Sample Diluent
- 1 vial (5 ml) **Assay Buffer Concentrate** 20x (PBS with 1% Tween 20 and 10% BSA)
- bottle (50 ml) Wash Buffer Concentrate 20x (PBS with 1% Tween 20)
- 1 vial (15 ml) **Substrate Solution** (tetramethyl-benzidine)
- 1 vial (12 ml) **Stop Solution** (1M Phosphoric acid)
- 1 vial (0.4 ml) Blue-Dye
- 1 vial (0.4 ml) Green-Dye
- 1 vial (0.4 ml) Red-Dye
- 4 Adhesive Films

4.2 Reagents for mouse MCP-1 ELISA IB49702-10 (10x96 tests)

- 10 aluminium pouches with a **Microwell Plate coated** with monoclonal antibody to mouse MCP-1
- 10 vials (100 µl) **Biotin-Conjugate** anti-mouse MCP-1 monoclonal antibody
- 10 vials (150 µl) Streptavidin-HRP
- 10 vials mouse MCP-1 **Standard** lyophilized, 2000 pg/ml upon reconstitution
- 10 vials (12 ml) Sample Diluent
- 2 vials (5 ml) **Assay Buffer Concentrate** 20x (PBS with 1% Tween 20 and 10% BSA)
- 4 bottles (50 ml) **Wash Buffer Concentrate** 20x (PBS with 1% Tween 20)
- 10 vials (15 ml) Substrate Solution (tetramethyl-benzidine)
- 10 vials (12 ml) Stop Solution (1M Phosphoric acid)
- 6 vials (0.4 ml) Blue-Dye
- 6 vials (0.4 ml) Green-Dye
- 6 vials (0.4 ml) Red-Dye
- 20 Adhesive Films

5 Storage Instructions – ELISA Kit

Store kit reagents between 2° and 8°C. Immediately after use remaining reagents should be returned to cold storage (2° to 8°C). Expiry of the kit and reagents is stated on labels.

Expiry of the kit components can only be guaranteed if the components are stored properly, and if, in case of repeated use of one component, this reagent is not contaminated by the first handling.

6 Specimen Collection and Storage Instructions

Cell culture supernatant and serum were tested with this assay. Other body fluids might be suitable for use in the assay. Remove serum from the clot as soon as possible after clotting.

Pay attention to a possible "**Hook Effect**" due to high sample concentrations (see 11).

Samples containing a visible precipitate must be clarified prior to use in the assay. Do not use grossly hemolyzed or lipemic specimens.

Samples should be aliquoted and must be stored frozen at -20°C to avoid loss of bioactive mouse MCP-1. If samples are to be run within 24 hours, they may be stored at 2° to 8°C (for sample stability refer to 13.5).

Avoid repeated freeze-thaw cycles. Prior to assay, the frozen sample should be brought to room temperature slowly and mixed gently.

7 Materials Required But Not Provided

- 5 ml and 10 ml graduated pipettes
- 5 µl to 1000 µl adjustable single channel micropipettes with disposable tips
- 50 µl to 300 µl adjustable multichannel micropipette with disposable tips
- Multichannel micropipette reservoir
- Beakers, flasks, cylinders necessary for preparation of reagents
- Device for delivery of wash solution (multichannel wash bottle or automatic wash system)
- Microwell strip reader capable of reading at 450 nm (620 nm as optional reference wave length)
- Glass-distilled or deionized water
- Statistical calculator with program to perform regression analysis

8 Precautions for Use

- All chemicals should be considered as potentially hazardous. We therefore recommend that this product is handled only by those persons who have been trained in laboratory techniques and that it is used in accordance with the principles of good laboratory practice. Wear suitable protective clothing such as laboratory overalls, safety glasses and gloves. Care should be taken to avoid contact with skin or eyes. In the case of contact with skin or eyes wash immediately with water. See material safety data sheet(s) and/or safety statement(s) for specific advice.
- Reagents are intended for research use only and are not for use in diagnostic or therapeutic procedures.
- Do not mix or substitute reagents with those from other lots or other sources.
- Do not use kit reagents beyond expiration date on label.
- Do not expose kit reagents to strong light during storage or incubation.
- Do not pipette by mouth.
- Do not eat or smoke in areas where kit reagents or samples are handled.
- Avoid contact of skin or mucous membranes with kit reagents or specimens.
- Rubber or disposable latex gloves should be worn while handling kit reagents or specimens.
- Avoid contact of substrate solution with oxidizing agents and metal.
- Avoid splashing or generation of aerosols.
- In order to avoid microbial contamination or cross-contamination of reagents or specimens which may invalidate the test use disposable pipette tips and/or pipettes.
- Use clean, dedicated reagent trays for dispensing the conjugate and substrate reagent.

- Exposure to acid inactivates the conjugate.
- Glass-distilled water or deionized water must be used for reagent preparation.
- Substrate solution must be at room temperature prior to use.
- Decontaminate and dispose specimens and all potentially contaminated materials as they could contain infectious agents. The preferred method of decontamination is autoclaving for a minimum of 1 hour at 121.5°C.
- Liquid wastes not containing acid and neutralized waste may be mixed with sodium hypochlorite in volumes such that the final mixture contains 1.0% sodium hypochlorite. Allow 30 minutes for effective decontamination. Liquid waste containing acid must be neutralized prior to the addition of sodium hypochlorite.

9 Preparation of Reagents

Buffer concentrates should be brought to room temperature and should be diluted before starting the test procedure.

9.1 Wash Buffer

If crystals have formed in the **Wash Buffer Concentrate**, warm it gently until they have completely dissolved.

Pour entire contents (50 ml) of the Wash Buffer Concentrate into a clean 1000 ml graduated cylinder. Bring to final volume of 1000 ml with glassdistilled or deionized water. Mix gently to avoid foaming. The pH of the final solution should adjust to 7.4.

Transfer to a clean wash bottle and store at 2° to 25°C. Please note that Wash Buffer is stable for 30 days.

Wash Buffer may also be prepared as needed according to the following table:

Number of Strips	Wash Buffer Concentrate	Distilled Water
	(ml)	(ml)
1 - 6	25	475
1 - 12	50	950

9.2 Assay Buffer (1x)

Pour the entire contents (5 ml) of the **Assay Buffer Concentrate** (20x) into a clean 100 ml graduated cylinder. Bring to final volume of 100 ml with distilled water. Mix gently to avoid foaming.

Store at 2° to 8°C. Please note that the Assay Buffer (1x) is stable for 30 days.

Assay Buffer (1x) may also be prepared as needed according to the following table:

Number of Strips	Assay Buffer Concentrate (ml)	Distilled Water (ml)
1 - 6	2.5	47.5
1 - 12	5.0	95.0

9.3 Biotin-Conjugate

Please note that the Biotin-Conjugate should be used within 30 minutes after dilution.

Make a 1:100 dilution of the concentrated **Biotin-Conjugate** solution with Assay Buffer (1x) in a clean plastic tube as needed according to the following table:

Number of Strips	Biotin-Conjugate (ml)	Assay Buffer (1x) (ml)
1 - 6	0.03	2.97
1 - 12	0.06	5.94

9.4 Streptavidin-HRP

Please note that the Streptavidin-HRP should be used within 30 minutes after dilution.

Make a 1:100 dilution of the concentrated **Streptavidin-HRP** solution with Assay Buffer (1x) in a clean plastic tube as needed according to the following table:

Number of Strips	Streptavidin-HRP (ml)	Assay Buffer (1x) (ml)
1 - 6	0.06	5.94
1 - 12	0.12	11.88

9.5 Mouse MCP-1 Standard

Reconstitute **mouse MCP-1 standard** by addition of distilled water. Reconstitution volume is stated on the label of the standard vial. Swirl or mix gently to insure complete and homogeneous solubilization (concentration of reconstituted standard = 2000 pg/ml). The standard has to be used immediately after reconstitution and cannot be stored.

Standard dilutions can be prepared directly on the microwell plate (see 10.c) or alternatively in tubes (see 9.5.1).

9.5.1 External Standard Dilution

Label 7 tubes, one for each standard point.

S1, S2, S3, S4, S5, S6, S7

Then prepare 1:2 serial dilutions for the standard curve as follows: Pipette 225 µl of Sample Diluent into each tube.

Pipette 225 μ l of reconstituted standard (concentration = 2000 pg/ml) into the first tube, labelled S1, and mix (concentration of standard 1 = 1000 pg/ml).

Pipette 225 μ l of this dilution into the second tube, labelled S2, and mix thoroughly before the next transfer.

Repeat serial dilutions 5 more times thus creating the points of the standard curve (see Figure 6).

Sample Diluent serves as blank.

9.6 Addition of Colour-giving Reagents: Blue-Dye, Green-Dye, Red-Dye

In order to help our customers to avoid any mistakes in pipetting the IBL-America ELISAs, IBL-America offers a tool that helps to monitor the addition of even very small volumes of a solution to the reaction well by giving distinctive colours to each step of the ELISA procedure.

This procedure is optional, does not in any way interfere with the test results, and is designed to help the customer with the performance of the test, but can also be omitted, just following the instruction booklet.

Alternatively, the dye solutions from the stocks provided (*Blue-Dye, Green-Dye, Red-Dye*) can be added to the reagents according to the following guidelines:

1. Diluent: Before standard and sample dilution add the *Blue-Dye* at a dilution of 1:250 (see table below) to the appropriate diluent (1x) according to the test protocol. After addition of *Blue-Dye*, proceed according to the instruction booklet.

5 ml Sample Diluent	20 µl Blue-Dye
12 ml Sample Diluent	48 μl Blue-Dye
50 ml Sample Diluent	200 μl Blue-Dye

2. Biotin-Conjugate: Before dilution of the concentrated Biotin-Conjugate, add the *Green-Dye* at a dilution of 1:100 (see table below) to the Assay Buffer (1x) used for the final conjugate dilution. Proceed after addition of *Green-Dye* according to the instruction booklet: Preparation of Biotin-Conjugate.

3 ml Assay Buffer (1x)	30 µl Green-Dye
6 ml Assay Buffer (1x)	60 μΙ Green-Dye

3. Streptavidin-HRP: Before dilution of the concentrated Streptavidin-HRP, add the *Red-Dye* at a dilution of 1:250 (see table below) to the Assay Buffer (1x) used for the final Streptavidin-HRP dilution. Proceed after addition of *Red-Dye* according to the instruction booklet: Preparation of Streptavidin-HRP.

6 ml Assay Buffer (1x)	24 μl Red-Dye
12 ml Assay Buffer (1x)	48 µl Red-Dye

10 Test Protocol

- a. Determine the number of microwell strips required to test the desired number of samples plus appropriate number of wells needed for running blanks and standards. Each sample, standard, blank and optional control sample should be assayed in duplicate. Remove extra microwell strips from holder and store in foil bag with the desiccant provided at 2°-8°C sealed tightly.
- b. Wash the microwell strips twice with approximately 400 µl Wash Buffer per well with thorough aspiration of microwell contents between washes. Allow the Wash Buffer to sit in the wells for about 10 – 15 seconds before aspiration. Take care not to scratch the surface of the microwells.

After the last wash step, empty wells and tap microwell strips on absorbent pad or paper towel to remove excess Wash Buffer. Use the microwell strips immediately after washing. Alternatively microwell strips can be placed upside down on a wet absorbent paper for not longer than 15 minutes. **Do not allow wells to dry**.

c. <u>Standard dilution on the microwell plate</u> (Alternatively the standard dilution can be prepared in tubes - see 9.5.1): Add 100 µl of Sample Diluent in duplicate to all standard wells. Pipette 100 µl of prepared standard (see Preparation of Standard 9.5, concentration = 2000 pg/ml) in duplicate into well A1 and A2 (see Table 1). Mix the contents of wells A1 and A2 by repeated aspiration and ejection (concentration of standard 1, S1 = 1000 pg/ml), and transfer 100 µl to wells B1 and B2, respectively (see Figure 7). Take care not to scratch the inner surface of the microwells. Continue this procedure 5 times, creating two rows of mouse MCP-1 standard dilutions ranging from 1000.0 to 15.6 pg/ml. Discard 100 µl of the contents from the last microwells (G1, G2) used.

In case of an <u>external standard dilution</u> (see 9.5.1), pipette 100 μ l of these standard dilutions (S1 - S7) in the standard wells according to Table 1.

Table 1

Table depicting an example of the arrangement of blanks, standards and samples in the microwell strips:

	1	2	3	4
A	Standard 1 (1000.0 pg/ml)	Standard 1 (1000.0 pg/ml)	Sample 1	Sample 1
В	Standard 2 (500.0 pg/ml)	Standard 2 (500.0 pg/ml)	Sample 2	Sample 2
С	Standard 3 (250.0 pg/ml)	Standard 3 (250.0 pg/ml)	Sample 3	Sample 3
D	Standard 4 (125.0 pg/ml)	Standard 4 (125.0 pg/ml)	Sample 4	Sample 4
E	Standard 5 (62.5 pg/ml)	Standard 5 (62.5 pg/ml)	Sample 5	Sample 5
F	Standard 6 (31.3 pg/ml)	Standard 6 (31.3 pg/ml)	Sample 6	Sample 6
G	Standard 7 (15.6 pg/ml)	Standard 7 (15.6 pg/ml)	Sample 7	Sample 7
Н	Blank	Blank	Sample 8	Sample 8

- d. Add 100 µl of Sample Diluent in duplicate to the blank wells.
- e. Add 50 µl of **Sample Diluent** to the **sample wells**.
- f. Add 50 µl of each sample in duplicate to the sample wells.
- g. Prepare Biotin-Conjugate (see Preparation of Biotin-Conjugate 9.3).
- h. Add 50 µl of Biotin-Conjugate to all wells.
- i. Cover with an adhesive film and incubate at room temperature (18 to 25°C) for 2 hours, if available on a microplate shaker set at 100 rpm.
- j. Prepare **Streptavidin-HRP** (refer to Preparation of Streptavidin-HRP 9.4).
- k. Remove adhesive film and empty wells. **Wash** microwell strips 3 times according to point b. of the test protocol. Proceed immediately to the next step.
- I. Add 100 μI of diluted **Streptavidin-HRP** to all wells, including the blank wells.
- m. Cover with an adhesive film and incubate at room temperature (18° to 25°C) for 1 hour, if available on a microplate shaker set at 100 rpm.
- n. Remove adhesive film and empty wells. **Wash** microwell strips 3 times according to point b. of the test protocol. Proceed immediately to the next step.
- o. Pipette 100 µl of TMB Substrate Solution to all wells.
- p. Incubate the microwell strips at room temperature (18° to 25°C) for about 10 min. Avoid direct exposure to intense light.

The colour development on the plate should be monitored and the substrate reaction stopped (see next point of this protocol) before positive wells are no longer properly recordable. Determination of the ideal time period for colour development has to be done individually for each assay.

It is recommended to add the stop solution when the highest standard has developed a dark blue colour. Alternatively the colour development can be monitored by the ELISA reader at 620 nm. The substrate reaction should be stopped as soon as Standard 1 has reached an OD of 0.6 - 0.65.

- q. Stop the enzyme reaction by quickly pipetting 100 µl of Stop
 Solution into each well. It is important that the Stop Solution is spread quickly and uniformly throughout the microwells to completely inactivate the enzyme. Results must be read immediately after the Stop Solution is added or within one hour if the microwell strips are stored at 2 8°C in the dark.
- r. Read absorbance of each microwell on a spectro-photometer using 450 nm as the primary wave length (optionally 620 nm as the reference wave length; 610 nm to 650 nm is acceptable). Blank the plate reader according to the manufacturer's instructions by using the blank wells. Determine the absorbance of both the samples and the standards.
- Note: In case of incubation without shaking the obtained O.D. values may be lower than indicated below. Nevertheless the results are still valid.

11 Calculation of Results

- Calculate the average absorbance values for each set of duplicate standards and samples. Duplicates should be within 20 per cent of the mean value.
- Create a standard curve by plotting the mean absorbance for each standard concentration on the ordinate against the mouse MCP-1 concentration on the abscissa. Draw a best fit curve through the points of the graph (a 5-parameter curve fit is recommended).
- To determine the concentration of circulating mouse MCP-1 for each sample, first find the mean absorbance value on the ordinate and extend a horizontal line to the standard curve. At the point of intersection, extend a vertical line to the abscissa and read the corresponding mouse MCP-1 concentration.
- If instructions in this protocol have been followed samples have been diluted 1:2 (50 µl sample + 50 µl Sample Diluent), the concentration read from the standard curve must be multiplied by the dilution factor (x 2).
- Calculation of samples with a concentration exceeding standard 1 may result in incorrect, low mouse MCP-1 levels (Hook Effect). Such samples require further external predilution according to expected mouse MCP-1 values with Sample Diluent in order to precisely quantitate the actual mouse MCP-1 level.
- It is suggested that each testing facility establishes a control sample of known mouse MCP-1 concentration and runs this additional control with each assay. If the values obtained are not within the expected range of the control, the assay results may be invalid.
- A representative standard curve is shown in Figure 8. This curve cannot be used to derive test results. Each laboratory must prepare a standard curve for each group of microwell strips assayed.

Figure 8

Representative standard curve for mouse MCP-1 ELISA. Mouse MCP-1 was diluted in serial 2-fold steps in Sample Diluent. Do not use this standard curve to derive test results. A standard curve must be run for each group of microwell strips assayed.

Table 2

Typical data using the mouse MCP-1 ELISA Measuring wavelength: 450 nm Reference wavelength: 620 nm

	Mouse MCP-1		Mean	
	Concentration	O.D. at	O.D. at	C.V.
Standard	(pg/ml)	450 nm	450 nm	(%)
1	1000.0	2.034	2.027	0.5%
	1000.0	2.020		
2	500.0	1.017	1.020	0.4%
	500.0	1.023		
3	250.0	0.519	0.513	1.7%
	250.0	0.507		
4	125.0	0.286	0.275	5.7%
	125.0	0.264		
5	62.5	0.163	0.160	3.1%
	62.5	0.156		
6	31.3	0.116	0.113	3.8%
	31.3	0.110		
7	15.6	0.084	0.084	0.8%
	15.6	0.083		
Blank	0	0.052	0.054	
	0	0.056		

The OD values of the standard curve may vary according to the conditions of assay performance (e.g. operator, pipetting technique, washing technique or temperature effects). Furthermore shelf life of the kit may affect enzymatic activity and thus colour intensity. Values measured are still valid.

12 Limitations

- Since exact conditions may vary from assay to assay, a standard curve must be established for every run.
- Bacterial or fungal contamination of either screen samples or reagents or cross-contamination between reagents may cause erroneous results.
- Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.
- Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Empty wells completely before dispensing fresh wash solution, fill with Wash Buffer as indicated for each wash cycle and do not allow wells to sit uncovered or dry for extended periods.

13 Performance Characteristics

13.1 Sensitivity

The limit of detection of mouse MCP-1 defined as the analyte concentration resulting in an absorbance significantly higher than that of the dilution medium (mean plus 2 standard deviations) was determined to be 2.2 pg/ml (mean of 6 independent assays).

13.2 Reproducibility

13.2.1 Intra-assay

Reproducibility within the assay was evaluated in 3 independent experiments. Each assay was carried out with 6 replicates of 6 serum samples containing different concentrations of mouse MCP-1. 2 standard curves were run on each plate. Data below show the mean mouse MCP-1 concentration and the coefficient of variation for each sample (see Table 3). The calculated overall intra-assay coefficient of variation was 6.2%. Table 3

The mean mouse MCP-1 concentration and the coefficient of variation for each sample

		Mean Mouse	
		MCP-1	Coefficient of
		Concentration	Variation
Sample	Experiment	(pg/ml)	(%)
1	1	2041	4
	2	1994	5
	3	2262	5
2	1	977	6
	2	1114	9
	3	1066	8
3	1	502	5
	2	500	5
	3	527	4
4	1	236	6
	2	252	9
	3	220	5
5	1	124	10
	2	115	8
	3	93	10
6	1	2053	4
	2	2008	3
	3	2143	5

13.2.2 Inter-assay

Assay to assay reproducibility within one laboratory was evaluated in 3 independent experiments. Each assay was carried out with 6 replicates of 6 serum samples containing different concentrations of mouse MCP-1. 2 standard curves were run on each plate. Data below show the mean mouse MCP-1 concentration and the coefficient of variation calculated on 18 determinations of each sample (see Table 4). The calculated overall inter-assay coefficient of variation was 5.6%.

Table 4

The mean mouse MCP-1 concentration and the coefficient of variation of each sample

Sample	Mean Mouse MCP-1 Concentration (pg/ml)	Coefficient of Variation (%)
1	2099	5.6
2	1052	5.4
3	509	2.4
4	236	5.5
5	111	11.9
6	2068	2.7

13.3 Spike Recovery

The spike recovery was evaluated by spiking 4 levels of mouse MCP-1 into a pooled serum sample. Recoveries were determined in 3 independent experiments with 6 replicates each.

The unspiked serum was used as blank in these experiments.

The recovery ranged from 80% to 111% with an overall mean recovery of 98%.

13.4 Dilution Parallelism

3 serum samples with different levels of mouse MCP-1 were analysed at serial 2 fold dilutions with 4 replicates each.

The recovery ranged from 84% to 106% with an overall recovery of 97% (see Table 5).

		Expected Mouse MCP-1	Observed Mouse MCP-1	Recovery of Expected Mouse MCP-1
		Concentration	Concentration	Concentration
Sample	Dilution	(pg/ml)	(pg/ml)	(%)
1	1:2		549.7	
	1:4	274.8	262.8	96
	1:8	137.4	138.1	101
	1:16	68.7	57.5	84
2	1:2		4061.7	
	1:4	2030.9	2129.1	105
	1:8	1015.4	981.3	97
	1:16	507.7	537.5	106
3	1:2		4127.0	
	1:4	2063.5	2108.2	102
	1:8	1031.8	962.2	93
	1:16	515.9	480.6	93

Table 5

13.5 Sample Stability

13.5.1 Freeze-Thaw Stability

Aliquots of serum samples (spiked or unspiked) were stored at -20°C and thawed 5 times, and the mouse MCP-1 levels determined. There was no significant loss of mouse MCP-1 immunoreactivity detected by freezing and thawing.

13.5.2 Storage Stability

Aliquots of serum samples (spiked or unspiked) were stored at -20°C, 2-8°C, room temperature (RT) and at 37°C, and the mouse MCP-1 level determined after 24 h. There was no significant loss of mouse MCP-1 immunoreactivity detected during storage under above conditions.

13.6 Specificity

The assay detects both natural and recombinant mouse MCP-1. The interference of circulating factors of the immune systeme was evaluated by spiking these proteins at physiologically relevant concentrations into a mouse MCP-1 positive serum. There was no crossreactivity detected, notably not with TCA3 and MIP-1 β .

14 Bibliography

- 1) Rollins BJ. 1997. Blood 90:909.
- 2) Baggiolini M., Dewald B. and Moser B. 1997. Annu Rev Immunol. 15:675.
- 3) Proost P., Wuyts A. and van Damme J. 1996. Int J Clin Lab Res. 26:211.
- 4) Taub DD. 1996. Cytokine Growth Factor Rev. 7:355.
- 5) Yoshimura T., Yuhki N., Moore SK., Appella E., Lerman MI., Leonard EJ. 1989. FEBS Lett. 244:487.
- 6) Carr MW., Roth SJ., Luther E., Rose SS., Springer TA. 1994. Proc Natl Acad Sci USA 91:3652.
- 7) Taub DD., Proost P., Murphy WJ., Anver M., Longo DL., van Damme J., Oppenheim JJ. 1995. J Clin Invest. 95:1370.
- 8) Shyy YJ., Li YS., Kolattukudy PE. 1990. Biochem Biophys Res Commun. 169:346.
- 9) Namiki M., Kawashima S., Yamashita T., Ozaki M., Hirase T., Ishida T., Inoue N., Hirata K., Matsukawa A., Morishita R., Kaneda Y., Yokoyama M. 2002. Arterioscler Thromb Vasc Biol. 22:115.
- 10) Graves DT., Jiang Y., Valente AJ. 1999. Front Biosci. 4:D571.
- 11) Grammas P., Ovase R. 2001. Neurobiol Aging. 22:837.
- 12) Tarzami ST., Cheng R., Miao W., Kitsis RN., Berman JW. 2002. J Mol Cell Cardiol. 34:209.
- 13) Mateo L., La Linn M., McColl SR., Cross S., Gardner J., Suhrbier A. 2000. Intervirology. 43:55.
- 14) Edwards JA., Denis F., Talbot PJ. 2000. J Neuroimmunol. 108:73.
- 15) McManus C., Berman JW., Berett FM., Staunton H., Farrell M., Brosnan CF. 1998. J Neuroimmunol. 86:20.
- 16) Mahad DJ., Howell SJ., Woodroofe MN. 2002. J Neurol Neurosurg Psychiatry. 72:498.

17) Kuna P., Reddigari SR., Rucinski D., Oppenheim JJ., Kaplan AP. 1992. J Exp Med. 175:489.

For literature update refer to www.IBL-America.com

15 Ordering Information

For orders please contact:

USA

IBL-America, Inc. 8201 Central Ave NE. Suite P Minneapolis, MN 55432, USA toll-free phone: +1 (888) 523 1246 phone: +1 (763) 780 2955 fax: +1 (763) 780 2988

For technical information please contact:

e-mail: ibl@ibl-america.com www.IBL-America.com

Cat.No. IB49702 mouse MCP-1 ELISA

Cat.No. IB49702-10 mouse MCP-1 ELISA

16 Reagent Preparation Summary

16.1 Wash Buffer

Add Wash Buffer Concentrate 20x (50 ml) to 950 ml distilled water.

Number of Strips	Wash Buffer Concentrate (ml)	Distilled Water (ml)
1 - 6	25	475
1 - 12	50	950

16.2 Assay Buffer (1x)

Add Assay Buffer Concentrate 20x (5 ml) to 95 ml distilled water.

Number of Strips	Assay Buffer Concentrate (ml)	Distilled Water (ml)
1 - 6	2.5	47.5
1 - 12	5.0	95.0

16.3 Biotin-Conjugate

Make a 1:100 dilution of **Biotin-Conjugate** in Assay Buffer (1x):

Number of Strips	Biotin-Conjugate (ml)	Assay Buffer (1x) (ml)
1 - 6	0.03	2.97
1 - 12	0.06	5.94

16.4 Streptavidin-HRP

Make a 1:100 dilution of **Streptavidin-HRP** in Assay Buffer (1x):

Number of Strips	Streptavidin-HRP (ml)	Assay Buffer (1x) (ml)
1 - 6	0.03	5.97
1 - 12	0.06	11.94

16.5 Mouse MCP-1 Standard

Reconstitute lyophilized **mouse MCP-1 standard** with distilled water. (Reconstitution volume is stated on the label of the standard vial.)

17 Test Protocol Summary

- 1. Determine the number of microwell strips required.
- 2. Wash microwell strips twice with Wash Buffer.
- Standard dilution on the microwell plate: Add 100 μl Sample Diluent, in duplicate, to all standard wells. Pipette 100 μl prepared standard into the first wells and create standard dilutions by transferring 100 μl from well to well. Discard 100 μl from the last wells.

Alternatively external standard dilution in tubes (see 9.5.1): Pipette 100 μ I of these standard dilutions in the microwell strips.

- 4. Add 100 µl Sample Diluent, in duplicate, to the blank wells.
- 5. Add 50 µl Sample Diluent to sample wells.
- 6. Add 50 µl sample in duplicate, to designated sample wells.
- 7. Prepare Biotin-Conjugate.
- 8. Add 50 µl Biotin-Conjugate to all wells.
- 9. Cover microwell strips and incubate 2 hours at room temperature (18° to 25°C).
- 10. Prepare Streptavidin-HRP.
- 11. Empty and wash microwell strips 3 times with Wash Buffer.
- 12. Add 100 µl diluted Streptavidin-HRP to all wells.
- 13. Cover microwell strips and incubate 1 hour at room temperature (18° to 25°C).
- 14. Empty and wash microwell strips 3 times with Wash Buffer.
- 15. Add 100 µl of TMB Substrate Solution to all wells.
- 16. Incubate the microwell strips for about 10 minutes at room temperature (18°to 25°C).
- 17. Add 100 µl Stop Solution to all wells.
- 18. Blank microwell reader and measure colour intensity at 450 nm.

Note: If instructions in this protocol have been followed samples have been diluted 1:2 (50 μ l sample + 50 μ l Sample Diluent), the concentration read from the standard curve must be multiplied by the dilution factor (x 2).