

PRODUCT INFORMATION

$\begin{array}{c} \textbf{Prostaglandin } \textbf{F}_{_{\boldsymbol{2}\alpha}} \\ \textbf{Enzyme Immunoassay Kit} \end{array}$

Catalog No. IB09649

96 Well Kit

Table of Contents

Description	Page	2
Introduction		2
Precautions		2
Materials Supplied		3
Storage		3
Materials Needed but Not Supplied		3
Sample Handling		4
Procedural Notes		5
Reagent Preparation		5
Assay Procedure		6
Calculation of Results		7
Typical Results		7
Typical Standard Curve		8
Typical Quality Control Parameters		8
Performance Characteristics		9
Sample Dilution Recommendations		11
References		11
Limited Warrantv		12

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Description

The IBL-America Prostaglandin $F_{2\alpha}$ kit is a competitive immunoassay for the determination of Prostaglandin F_{α} in biological fluids. Please read the complete kit insert

before performing this assav. The kit uses a polyclonal antibody to $PGF_{2\alpha}$ to bind, in a competitive manner, the $PGF_{2\alpha}$ in the sample or an alkaline phosphatase molecule which has $PGF_{2\alpha}$ covalently attached to it. After a simultaneous incubation at room temperature the excess reagents are washed away and substrate is added. After a short incubation time the enzyme reaction is stopped and the yellow color generated read on a microplate reader at 405nm. The intensity of the bound yellow color is inversely proportional to the concentration of $PGF_{2\alpha}$ in either standards or samples. The measured optical density is used to calculate the concentration of $PGF_{2\alpha}$. For further explanation of the principles and practice of immunoassays please see the excellent books by $Chard^1$ or $Tiissen^2$.

Introduction

Prostaglandin $F_{2\alpha}$ (PGF $_{2\alpha}$) is formed in a variety of cells from PGH $_2$, which itself is synthesized from arachidonic acid by the enzyme prostaglandin synthetase³. PGF $_{2\alpha}$ is often viewed as an antagonist to PGE $_2$ due to their opposing effects on various tissues⁴. PGF $_{2\alpha}$ is a potent bronchoconstrictor and has been implicated in asthma attacks^{5,6}. PGF $_{2\alpha}$ is also involved in reproductive functions including corpus luteum regulation⁷, uterine contractions⁸, and sperm motility⁹. This has led to its use in terminating pregnancies and inducing labor at term^{5,7,8,10}. High levels of PGF $_{2\alpha}$ have also been associated with preeclampsia¹¹.

Prostaglandin
$$F_{2\alpha}$$

Precautions

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

- Some kit components contain azide, which may react with lead or copper plumbing. When
 disposing of reagents always flush with large volumes of water to prevent azide build-up.
- Stop Solution is a solution of trisodium phosphate. This solution is caustic; care should be taken in use.
- 3. The activity of the alkaline phosphatase conjugate is dependent on the presence of Mg^{2+} and Zn^{2+} ions. The activity of the conjugate is affected by concentrations of chelators (>10 mM) such as EDTA and EGTA.
- 4. We test this kit's performance with a variety of samples, however it is possible that high levels of interfering substances may cause variation in assay results.
- 5. The Prostaglandin $F_{2\alpha}$ Standard provided is supplied in ethanolic buffer at a pH optimized to maintain PGF integrity. Care should a taken handling this material because of the known and unknown effects of prostaglandins.

Materials Supplied

- 1. Donkey anti-Sheep IgG Microtiter Plate, One Plate of 96 Wells
 - A plate using break-apart strips coated with donkey antibody specific to sheep IgG.
- 2. PGF $^{2\alpha}$ EIA Conjugate, 5 mL
 - A blue solution of alkaline phosphatase conjugated with $PGF_{2\alpha}$
- 3. $PGF_{2\alpha}$ EIA Antibody, 5 mL
 - A yellow solution of a polyclonal sheep antibody to PGF₃₀.
- 4. Assay Buffer, 30 mL
 - Tris buffered saline, containing proteins and sodium azide as preservative.
- 5. Wash Buffer Concentrate, 30 mL
 - Tris buffered saline containing detergents.
- 6. Prostaglandin F₂₀Standard, 0.5 mL
 - A solution of 500,000 pg/mL PGF.
- 7. pNpp Substrate, 20 mL
 - A solution of p-nitrophenyl phosphate in buffer. Ready to use.
- 8. Stop Solution, 5 mL
 - A solution of trisodium phosphate in water. I eep tightly capped. Caution: Caustic.
- 9. PGF₂₀ Assay Layout Sheet, 1 each
- 10. Plate Sealer, 1 each

Storage

All components of this kit are stable at 4 °C until the kit's expiration date.

Materials Needed but Not Supplied

- 1. Deionized or distilled water.
- 2. Precision pipets for volumes between 5 μ L and 1,000 μ L.
- 3. Repeater pipets for dispensing 50 μL and 200 μL.
- 4. Disposable beakers for diluting buffer concentrates.
- 5. Graduated cylinders.
- 6. A microplate shaker.
- 7. Adsorbent paper for blotting.
- 8. Microplate reader capable of reading at 405 nm, preferably with correction between 570 and 590 nm.

Sample Handling

The $PGF_{2\alpha}$ enzyme immunoassay is compatible with $PGF_{2\alpha}$ samples in a wide range of matrices. Samples diluted sufficiently into Assay $\mathbb B$ uffer can be read directly from the standard curve. Please refer to the Sample Recovery recommendations on page 11 for details of suggested dilutions. However, the end user **must verify** that the recommended dilutions are

appropriate for their samples. Samples containing sheep IgG may interfere with the assay.

Samples in the majority of tissue culture media, including those containing fetal bovine serum, can also be read in the assay, provided the standards have been diluted into the tissue culture media instead of Assay $\mathbb B$ uffer. There will be a small change in binding associated with running the standards and samples in media. Users should only use standard curves generated in media or buffer to calculate concentrations of PGF $_{2\alpha}$ in the appropriate matrix. For tissue, urine and plasma samples, prostaglandin synthetase inhibitors, such as, indomethacin or meclofenamic acid at concentrations up to $10~\mu g/mL$ should be added to either the tissue homogenate or urine and plasma samples.

Some samples normally have very low levels of $PGF_{2\alpha}$ present and extraction may be necessary for accurate measurement. A suitable extraction procedure is outlined below:

Materials Needed

- 1. PGF₂₀ Standard to allow extraction efficiency to be accurately determined.
- 2. 2M hydrochloric acid, deionized water, ethanol, hexane and ethyl acetate.
- 3. 200 mg C₁₈ Reverse Phase Extraction Columns.

Procedure

- 1. Acidify the plasma, urine or tissue homogenate by addition of 2M HCl to pH of 3.5. Approximately 50 μL of HCl will be needed per mL of plasma. Allow to sit at 4 °C for 15 minutes. Centrifuge samples in a microcentrifuge for 2 minutes to remove any precipitate.
- Prepare the C₁₈ reverse phase column by washing with 10 mL of ethanol followed by 10 mL of deionized water.
- 3. Apply the sample under a slight positive pressure to obtain a flow rate of about 0.5mL/minute. Wash the column with 10 mL of water, followed by 10 mL of 15% ethanol, and finally 10 mL hexane. Elute the sample from the column by addition of 10 mL ethyl acetate.
- 4. If analysis is to be carried out immediately, evaporate samples under a stream of nitrogen. Add at least 250 μ L of Assay B uffer to the dried samples. V ortex well then allow to sit five minutes at room temperature. Repeat twice more. If analysis is to be delayed, store samples as the eluted ethyl acetate solutions at -80 °C until the immunoassay is to be run. Evaporate the organic solvent under a stream of nitrogen prior to running assay and reconstitute as above.

Please refer to references 12-15 for details of extraction protocols.

Procedural Notes

- 1. Do not mix components from different kit lots or use reagents beyond the kit expiration date.
- 2. Allow all reagents to warm to room temperature for at least 30 minutes before opening.
- 3. Standards can be made up in either glass or plastic tubes.
- 4. Pre-rinse the pipet tip with reagent, use fresh pipet tips for each sample, standard and reagent.
- 5. Pipet standards and samples to the bottom of the wells.
- 6. Add the reagents to the side of the well to avoid contamination.
- 7. This kit uses break-apart microtiter strips, which allow the user to measure as many samples as desired. Unused wells must be kept desiccated at 4 °C in the sealed bag provided. The wells should be used in the frame provided.
- 8. Care must be taken to minimize contamination by endogenous alkaline phosphatase. Contaminating alkaline phosphatase activity, especially in the substrate solution, may lead to high blanks. Care should be taken not to touch pipet tips and other items that are used in the assay with bare hands.
- 9. Prior to addition of substrate, ensure that there is no residual wash buffer in the wells.

 Any remaining wash buffer may cause variation in assay results.

Reagent Preparation

1. PGF_{2a} Standard

Allow the 500,000 pg/mL PGF $_{2\alpha}$ standard solution to warm to room temperature. Label eight 12 x 75 mm glass tubes # 1 through # 8. Pipet 900 μ L of standard diluent (Assav B uffer or Tissue Culture Media) into tube # 1. Pipet 750 μ L of standard diluent into tubes # 2 through # 8. Add 100 μ L of the 500,000 pg/mL standard to tube # 1. \forall ortex thoroughly. Add 250 μ L of tube # 1 to tube # 2 and vortex thoroughly. Add 250 μ L of tube # 2 to tube # 3 and vortex. Continue this for tubes # 4 through # 8.

The concentration of $PGF_{2\alpha}$ in tubes #1 through #8 will be 50,000, 12,500, 3,125,781.25, 195.31, 48.83, 12.2, and 3.05 pg/mL respectively. See $PGF_{2\alpha}$ Assav Lavout Sheet for dilution details.

Diluted standards should be used within 60 minutes of preparation.

2. Wash Buffer

Prepare the Wash B uffer by diluting 5 mL of the supplied concentrate with 95 mL of deionized water. This can be stored at room temperature until the kit expiration date, or for 3 months, whichever is earlier.

Assay Procedure

Bring all reagents to room temperature for at least 30 minutes prior to opening.

All standards and samples should be run in duplicate.

- 1. Refer to the Assay Layout Sheet to determine the number of wells to be used and put any remaining wells with the desiccant back into the pouch and seal the ziploc. Store unused wells at 4 °C.
- 2. Pipet 100 μ L of standard diluent (Assay B uffer or Tissue Culture Media) into the NSB and the B o (0 pg/mL Standard) wells.
- 3. Pipet 100 µL of Standards # 1 through # 8 into the appropriate wells.
- 4. Pipet 100 μL of the Samples into the appropriate wells.
- 5. Pipet 50 μL of Assay B uffer into the NSB wells.
- 6. Pipet 50 μL of blue Conjugate into each well, except the TA and β lank wells.
- 7. Pipet 50 μL of yellow Antibody into each well, except the β lank, TA and NSβ wells.

NOTE: Every well used should be **Green** in color except the NSB wells which should be **Blue**. The B lank and TA wells are empty at this point and have no color.

- 8. Incubate the plate at room temperature on a plate shaker for 2 hours at ~ 500 rpm. The plate may be covered with the plate sealer provided, if so desired.
- 9. Emptly the contents of the wells and wash by adding $400 \mu L$ of wash solution to every well. Repeat the wash 2 more times for a total of **3 Washes.**
- 10. After the final wash, empty or aspirate the wells, and firmly tap the plate on a lint free paper towel to remove any remaining wash buffer.
- 11. Add 5 μ L of the blue Conjugate Solution to TA wells.
- 12. Add 200 μ L of the pNpp Substrate solution to each well. Incubate at room temperature for 45 minutes without shaking.
- 13. Add 50 μL of Stop Solution to each well.
- 14. B lank the plate reader against the B lank wells, read the optical density at 405 nm, preferably ith correction between 570 and 590 nm. If the plate reader is not able to be blanked against the B lank wells, manually subtract the mean optical density of the B lank wells from all readings.

Calculation of Results

Several options are available for the calculation of the concentration of PGF_{2a} in the samples. We recommend that the data be handled by an immunoassay software package utilizing a 4 parameter logistic curve fitting program. If this sort of data reduction software is not readily available, the concentration of PGF_{2a} can be calculated as follows:

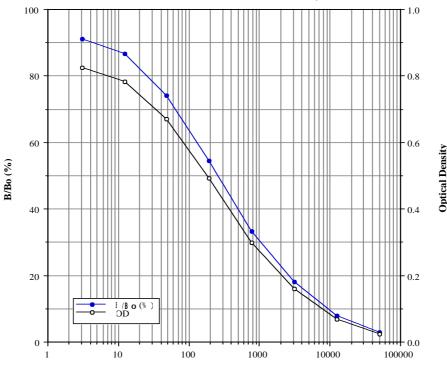
1. Calculate the average net Optical Density (OD) bound for each standard and sample by subtracting the average NSB OD from the average OD bound:

Average Net OD = Average B ound OD - Average NSB OD

2. Calculate the binding of each pair of standard wells as a percentage of the maximum binding wells (B o), using the following formula:

Percent B ound = Net OD x 100 Net B o OD

3. Using Logit-Log paper plot Percent $\mathbb B$ ound versus Concentration of PGF $_{2\alpha}$ for the standards. Approximate a straight line through the points. The concentration of PGF $_{2\alpha}$ in the unknowns can be determined by interpolation.


Typical Results

The results shown below are for illustration only and **should not** be used to calculate results from another assay.

Sample	Mean OD (-B lank)	Average Net OD	Percent Bound	$\frac{\mathbf{PGF}_{2\alpha}}{(\mathbf{\underline{pg/mL}})}$
B lank OD	(0.071)			
TA	1.021	1.021		
NSB	0.008	0.000	0.0%	
Во	0.689	0.681	100%	0
S1	0.020	0.012	2.9%	50,000
S2	0.050	0.042	7.4%	12,500
S3	0.121	0.113	17.7%	3,125
S4	0.220	0.212	32.1%	781
S5	0.347	0.339	50.5%	195
S6	0.516	0.508	74.9%	48.8
S7	0.642	0.634	93.2%	12.2
S8	0.680	0.672	98.7%	3.05
Unknown 1	0.507	0.499	73.6%	182
Unknown 2	0.110	0.102	16.0%	5,852

Typical Standard Curve

A typical standard curve is shown below. This curve **must not** be used to calculate $PGF_{2\alpha}$ concentrations; each user must run a standard curve for each assay.

PGF2a Conc. (pg/mL)

Typical Ouality Control Parameters

Total Activity Added = 1.021 x 10 = 10.21

% NSB = 0.08% % B o/TA = 6.70%

Ouality of Fit = 0.9999 (Calculated from 4 parameter logistic curve fit)

 20% Intercept
 =
 2,041 pg/mL

 50% Intercept
 =
 230 pg/mL

 80% Intercept
 =
 33 pg/mL

Performance Characteristics

The following parameters for this kit were determined using the guidelines listed in the National Committee for Clinical Laboratory Standards (NCCLS) Evaluation Protocols¹⁶.

Sensitivity

Sensitivity was calculated by determining the average optical density bound for sixteen (16) wells run as \mathbb{B} o, and comparing to the average optical density for sixteen (16) wells run with Standard # 8. The detection limit was determined as the concentration of PGF_{2 α} measured at two (2) standard deviations from the zero along the standard curve.

Average Optical Density for the B o=	$0.843 \pm 0.022 (2.60\%)$
Average Optical Density for Standard #8 =	$0.823 \pm 0.018 (2.18\%)$

Delta Optical Density (0-3.05 pg/mL) = 0.020

2 SD's of the Zero Standard = 2 x 0.022 = 0.044

Sensitivity = $\frac{0.044}{0.020}$ x 3.05 pg/mL = **6.71 pg/mL**

Linearity

A sample containing $10,000\,\mathrm{pg/mL\,PGF}_{2\alpha}$ was diluted serially 4 times 1:10 in the kit Assay $\mathbb B$ uffer and measured in the assay. The data was plotted graphically as actual $\mathrm{PGF}_{2\alpha}$ concentration versus measured $\mathrm{PGF}_{2\alpha}$ concentration.

The line obtained had a slope of 1.069 with a correlation coefficient of 0.999.

Precision

Intra-assay precision was determined by taking samples containing low, medium and high concentrations of $PGF_{2\alpha}$ and running these samples multiple times (n= 10) in the same assay. Inter-assay precision was determined by measuring two samples with low and high concentrations of $PGF_{2\alpha}$ in multiple assays (n= 8).

The precision numbers listed below represent the percent coefficient of variation for the concentrations of PGF_{2 α} determined in these assays as calculated by a 4 parameter logistic curve fitting program.

	$\frac{\text{PGF}_{2\alpha}}{(\text{pg/mL})}$	Intra-assay <u>% CV</u>	Inter-assay <u>% CV</u>
Low	83	13.1	
Medium	405	6.8	
High	916	4.9	
Low	47		9.7
Med	290		5.5
High	731		3.1

Cross Reactivities

The cross reactivities for a number of related eicosanoid compounds was determined by dissolving the cross reactant (purity checked by N.M.R. and other analytical methods) in Assay B uffer at concentrations from 500,000 to 5 pg/mL. These samples were then measured in the PGF $_{2\alpha}$ assay, and the measured PGF $_{2\alpha}$ concentration at 50% B/B o calculated. The % cross reactivity was calculated by comparison with the actual concentration of cross reactant in the sample and expressed as a percentage.

Compound	Cross Reactivity
PGF_{2a}	100%
$PGF_{1\alpha}$	11.82%
PGD ₂	3.62%
6-keto-PGF _{1a}	1.38%
PGI ₂	1.25%
PGE,	0.77%
Thromboxane B 2	0.77%
8-iso PGF _{2a}	0.73%
PGE ₁	0.39%
PGA ₂	< 0.10%
6,15-keto-13,14-dihydro-PGF _{1α}	< 0.01%
2-Arachidonoylglycerol	< 0.01%
Anandamide	< 0.01%

Sample Recoveries

Please refer to pages 4 and 5 Sample Handling recommendations and Standard preparation.

 $PGF_{2\alpha}$ concentrations were measured in a variety of different samples including tissue culture media, human saliva, human urine, porcine and human serum, and porcine plasma. For samples in tissue culture media, ensure that the standards have been diluted into the same media. $PGF_{2\alpha}$ was spiked into the undiluted samples of these media, which were diluted with the kit Assay $\mathbb B$ uffer and assayed in the kit. The following results were obtained:

<u>Sample</u>	% Recovery	Recommended Dilution*
Tissue Culture Media		Neat
Human Saliva	103.5	≥1:20
Human Urine	107.0	>1:20
Porcine & Human Serum	100.3	≥1:10
Porcine Plasma	96.9	≥1:10

^{*} See Sample Handling instructions on page 4 for details.

References

- 1. T. Chard," An Introduciton to Radioimmunoassay & Related Techniques 4th Ed.", (1990) Amsterdam: Elsevier.
- 2. P. Tijssen," Practice & Theory of Enzyme Immunoassays", (1985) Amsterdam: Elsevier.
- 3. B. Samuelsson, et al., Ann. Rev. B iochem., (1978) 47: 997.
- 4. N.H. Andersen, et al., <u>Prostaglandins</u>, (1981) <u>22</u>: 841.
- 5. J.I. Fishburne, et al., Obstet. Gynecol., (1972) 39: 892.
- 6. A.A. Matthe, et al., New Engl. J. Med., (1977) 296: 850.
- 7. F. Stormshak, et al., Adv. Exp. Med. B iol., (1987) 219: 327.
- 8. D.H. Lein, et al., J. Reprod. Fert., Suppl., (1989) 39: 231.
- 9. A.K. Didolkar and D. Roychowdhury, Andrologia, (1980) 12: 135.
- 10. G. Jenkin, J. Reprod. Fert., Suppl., (1992) 45: 97.
- 11. S.A. Friedman, <u>Obstet. Gynecol.</u>, (1988) <u>71</u>: 122.
- 12. K. Green, et al., Anal. B iochem., (1973) <u>54</u>: 434.
- 13. J. Frolich, et al., J. Clin. Invest., (1975) <u>55</u>: 763.
- 14. J.E. Shaw and P.W. Ramwell, Meth. B iochem. Anal., (1969) 17: 325.
- 15. K. Green, et al., Adv. Prostaglandin & Thromboxane Res., (1978) 5: 15.
- 16. National Committee for Clinical Laboratory Standards Evaluation Protocols, SC1, (1989) Villanova, PA: NCCLS.

LIMITED WARRANTY

IBL-America warrants that at the time of shipment this product is free from defects in materials and workmanship. This warranty is in lieu of any other warranty expressed or implied, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose.

IBL-America must be notified of any breach of this warranty within 48 hours of receipt of the product. No claim shall be honored if IBL-America is not notified within this time period, or if the product has been stored in any way other than outlined in this publication. The sole and exclusive remedy of the customer for any liability based upon this warranty is limited to the replacement of the product, or refund of the invoice price of the goods.

For more details concerning the information within this kit insert, or to order any IBL-America products, please call (763) 780-2955 between 8:00 a.m. and 5:00 p.m. CST.

Material Safety Data Sheet (MSDS) available on our website or by fax.

Immuno-Biological Telephone: 1 (763) 780-2955

Laboratories, Inc.

8201 Central Ave NE Fax: 1 (763) 780-2988

Minneapolis, MN 55432 E-mail: ibl@ibl-america.com Website: www.ibl-america.com

December 8, 2004

